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Abstract. We formulate an exact form of the virial theorem for a relativistic charged 
thermodynamic perfect fluid in curved spacetime in time-orthogonal coordinates and 
diagonal metric tensor. Its Newtonian limit leads to a generalisation of Chandrasekhar’s 
tensor virial theorem in hydromagnetics. We apply the exact form of the virial theorem in 
curved spacetime, to obtain equilibrium configurations in two cases. 

1. Introduction 

Chandrasekhar obtained a tensor form of the virial theorem in Newtonian hydro- 
magnetics (Chandrasekhar 1960, 1961) which he later extended to the case of hydr- 
odynamics in the post-Newtonian approximation of general relativity (Chandrasekhar 
1965). The formulation of an exact form of the virial theorem in curved spacetime 
which will be sufficiently general to include the case of a perfect fluid with or without 
electromagnetic fields is desirable mainly because of its relevance to relativistic astro- 
physics. 

Detailed comparisons with earlier attempts to extend the virial theorem to the 
general relativistic regime (Bonazzola 1973, Vilain 1979) are somewhat difficult to 
make and not very useful, because the point.of view adopted in these attempts is 
different from ours. The scopes of these papers are also different. The virial theorems 
obtained are scalar and suitable for axisymmetric and spherically symmetric 
spacetimes. In this paper, scalar and non-scalar forms of the virial theorem are 
obtained, and no particular spatial symmetries are assumed. A major difference is that 
the virial theorems of these earlier attempts arise from the integration of the field 
equations, but the virial theorem obtained here arises from the integration of the 
products of the equations of motion and the xi. Furthermore, we explicitly include the 
electromagnetic field as a source of curvature of spacetime in addition to the matter 
distribution. Apart from the ensuing generality, these features lead to forms of the 
virial theorem which are physically clearer, or at least more closely analogous to the 
Newtonian forms and the classical results of Chandrasekhar. 

We shall confine our attention to the case of a diagonal metric tensor g,, and 
coordinates x @  = (xl, x2, x3, x4) with x 4  = ct, c being the speed of light in zlucuo. Greek 
index letters take the values 1, 2 ,  3, 4 for the spacetime coordinates, Roman ones the 
values 1, 2 ,  3 for the space coordinates, the signature of g,, is +2,  a comma denotes 
partial differentiation, and a semicolon covariant differentiation. If we set q = (-g)”’, 
h = y , s = ( - 8 ~ ~ ) ~ ’ ’  where g and y are the determinants of the spacetime metric 1 /’ 
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tensor g,, and the spatial metric tensor yii respectively, then q = hs. The Newtonian 
gravitational constant will be denoted by G, and we shall use electrostatic units for the 
electromagnetic field. 

2. The equations of motion and Maxwell’s equations 

We consider a domain of curved spacetime with an energy distribution associated with a 
charged thermodynamic perfect fluid of null conductivity, and an electromagnetic field. 
The metric tensor g,, and the electromagnetic tensor FFY may be taken to arise from the 
fluid itself. The total energy tensor T,’ is T,” = M,” + E,”, where M,’ and EsL” are 
respectively the matter and electromagnetic energy tensors. The detailed form of E,” is 
not directly required, but for M,” we have 

M,” = AmKV,V” +p8,”. (2.1) 

Here A is the proper number density of particles of the fluid at x a ,  rrt is the proper mass 
of a single particle, K = (6 +p/c2)/Am, b and p being respectively the proper mass 
density and isotropic pressure of the fluid at x p ,  V” = dx”/dr is the contravariant form 
of the four-velocity of the fluid at x a ,  d r  = (-gaP dx” dx ) / c  being the element of 
proper time, and 8,” is the Kronecker delta. If n is the coordinate number density of 
particles at x a ,  then n = A,s dt/d.r. Similarly, if cr and 6 are respectively the coordinate 
and proper charge densities at x u ,  then (T = &s dt/dr (Maller 1972 p 415). 

The particle four-current 11” with norm Ac, and the electric four-current J” with 
norm 6c are given by n y  = A V ’  L- n(u‘,  c)/s, and J” =&Vu = (T(zI’, c)/s, v ’  being the 
contravariant form of the three-velocity of the fluid at x a .  The total energy tensor and 
the four-currents are covariantly conserved: 

P 1/2 

T,”,” = 0,  (2.2) 

J ” , ,  = 0, (2.3) 

n ”,” = 0. (2.4) 
Using equations (2.1), (2.4) and the results E,”,, = -F,J”/c, VY(KV,),y = d(KV,)/d.r, 
a more detailed form of equation (2.2) is 

(2.5) 

where rP,” is the Christoffel symbol of the second kind. The spatial part of equation 
(2.5) may be written as 

Am (d/dr)(KV,) = AmKI”,,,V”VD - p , ,  + (l/c)F,J”, 

dt  d dt  1 
d r  d t (  d r  ) Am- - K-vi = AmKrDi,.V”V, - P , ~ + ; F ,  J”, 

where d/dt = (a/at) + ( v k a / d x k )  = (d.r/dt) V p a / a x p  represents time differentiation 
following the motion. 

The usual four-tensor form of the electromagnetic field equations in curved 
spacetime is unsuitable here, and we shall express these equations in Maxwellian form 
in terms of the electromagnetic three-vectors E, 0, H, and B. This is done in detail by 
Moller (1972 p 415), and so we shall only state the results in terms of the notation and 
convention used here. The electromagnetic tensor FWy is FWy = Q,,,, - @,,” where a, is 
the electromagnetic four-potential. The covariant forms of the three-vectors E and H 
are then given by Ei = F i 4  = Q4,; - Qi,4, Hi = s e i k P k p / 2 ,  where e i k p  = heikp and elkp = 
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E,kp/ h are the completely antisymmetric permutation tensors, 6,kp being the Levi-Civita 
symbol. In time-orthogonal coordinates, ys = g, and the contravariant forms of D and 
B are given by D' = E'/s ,  B' = H'/s ,  where E' = y"E1, H'  = y"H,. The covariant form 
of the vector product (a  x 6 )  of two three-vectors n and b is defined by (a  x b ) ,  = 
elkpakbp, while the curl and divergence of a are defined by curl a = etkPap,k and 
div a = (hak),k/h.  With these, the equations of the electromagnetic field assume the 
form 

curl E = -h-'(hB),4, div B = 0, (2 .7)  

curl H -  h-'(hD),4 = (47r/c)au, div D = 47ra, (2.8) 

which are Maxwell's equations in curvilinear coordinates. 
It is now possible to calculate the expression qFL J"/c which will be required in the 

sequel. Using the expressions for Fly and J "  and the definition of the vector product, we 
obtain qFL J"/c = d [ ( u  x B),/c + (a4,' - Using the first of equations (2.13) and 
the definitions of the vector product and the curl operator, this is reduced to the desired 
form 

3. The virial theorem 

We now multiply the equation of motion (2.6) by x'q, and integrate over a spatial 
domain 0. Using the expression (2.9) for qFi J"/c, the relation between n and d, and 
bearing in mind that the element dR of spatial volume is d R =  h d3x where d3x = 
dx' dx2 dx3, we obtain 

The element of proper spatial volume is d h  = s(dt/dT) dR, and so n dR = d d h .  Using 
the results dh/d.r = Vu;, d h  and di/d.r = V"rZ,, (Misner et al 1973 p 559), we obtain 
d(d dh)/dT = ay;" d h  = 0 by equation (2.4). Since n d f l =  6 d h  and d/dT = 
(dt/dT) d/dt, this implies that d(n do ) /& = 0, and so equation (3.1) may be written as 
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where 

A Georgiou 

dt 2/ = x’nmK-vi dR, b d r  

, 1  dt  Si‘ = 5 lo nmK- viv’ dR. 
d r  

(3.6) 

(3.7) 

The last two volume integrals in equation (3.5) may now be transformed into sums of 
volume and surface integrals. Using the result q,j  = qrPiP (Moller 1972 p 339), we find 

In x ’ s ~ , ~  dR  = I,,, x’sp dXi - Cl/ - S/(r - 1)U 

where 

(3.8) 

(3.9) 

(3.10) 

Here r is used to denote the adiabatic index in the context of the Newtonian reduction 
of S/(r - l)U, to be carried out later, aR is the boundary of R and dXi is the component 
of the vector element of area along x i .  The transformation of the last volume integral in 
equation (3.5), is more complicated. After some calculations involving the Levi-Civita 
symbol, the second of Maxwell’s equations (2.7) and the result h,i = hTPjp ,  we obtain 

H i B ’ d R + j  xiHkBkrPjp d R +  x’HkBk,j dR. (3.11) 

We further note that x’(Hj,kB - Hk,iBk - E i k m E k n p p , , , B  ”1 is null for all i and j ,  and so its 
volume integral is null. This leads to a second expression for the last volume integral in 
equation (3.5): 

- I, n I, 

X ’ E i k m E k n ~ p , n B  “ dR = X ’ H j B  dXk - In HiB’ dR - I X ’ H k , i B  dR. (3.12) I, I,, n 

Combining expressions (3.11) and (3.12), we finally obtain 

where 

(3.14) 

(3.15) 
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and 9.X is the contracted form of 9.X/. Using equations (3.8) and (3.13), equation (3.5) 
becomes 

The contracted form of this equation is 

d 2  
dt 
-=%+ 2&+ CJ + Q- X'SP dXj +d + 3(r- 1)U 

+'J xi(2HiBk d&-HkBk dZi)+2R+R. 
877 an 

(3.16) 

(3.17) 

We note that the terms appearing in these equations are not tensors, and that the 
Christoffel symbol of the second kind appearing in the expression for %/ is with respect 
to the spatial metric tensor yii. 

Physical considerations imply that if the boundary is placed at infinity, the surface 
integrals in equations (3.16) and (3.17) vanish, and so 

(3.18) 

~ = m + 2 ~ + ~ + i ~ 1 + ~ + 3 ( r - i ) u + 2 ~ + m .  dt (3.19) 

Equation (3.18) and its contracted version (3.19) represent exact forms of the virial 
theorem in curved spacetime, which are sufficiently general to be applied to a thermo- 
dynamic perfect fluid or dust cloud and to a charged thermodynamic perfect fluid or 
dust cloud in an electromagnetic field. In the absence of an electric field, the terms 3; 
and Q/ and their contracted forms in equations (3.16)-(3.19) vanish, and we have the 
case of hydromagnetics in curved spacetime. In the absence of a magnetic field, the 
terms El!, 2R/, and 8/ and their contracted forms in equations (3.16)-(3.19) as well as 
the surface integrals involving the components of the magnetic three-vectors in 
equations (3.16)-(3.17) vanish, and we have the case of a charged thermodynamic 
perfect fluid in an electric field in curved spacetime. In the absence of both electric and 
magnetic fields, the terms 3/, a/, 2R/ and IT/ and their contracted forms in equations 
(3.16)-(3.19) as well as the surface integrals involving the components of the magnetic 
three-vectors in equations (3.16)-(3.17) vanish, and we have the case of a thermo- 
dynamic perfect fluid in curved spacetime. 

An alternative version of equations (3.16)-(3.19) which perhaps gives a clearer 
physical picture may be obtained by re-expressing the terms 3/ and Q/. We first 
note that E i , k  = E k , i  +Ek,4, and on using the second of Maxwell's equations (2.8), 
C(O4,i -Oi,4) = Ei(hDk),k/4rh. We may thus obtain 



3756 A Georgiou 

where we have used the relations F,k,4Dk = E ~ ~ ~ ( ~ B ~ ) , ~ D ~ ,  and eikm((hDk),4Bnr + 
D k ( h B m ) , 4 )  = ( D  x B ) i , 4 f ( D  x B)ih-1h!4 with h,4 = : h y P k P r 4 .  By substituting 
x'hEk,iDk = (x ihEkDk), i  - S/hEkDk -x l rPiphEkDk -x 'hEkD ,i with TPiph = h,i into 
equation (3.20), we also have 

+ S /  jn EkD dR + In x'EkD krPp, dR + x'EkD k, l  dfl  I,, 
x'(D xB)i ,4dR- x ' ( D ~ B ) ~ h - ' h , 4 d C l ) .  

Combining equations (3.20) and (3.21) we finally obtain 

'I x'(D x B)i.4 dR-  -- x'(D X &),h-'h,4 dR, 
1 J 

477 n 477 n 

where 

(3.21) 

(3.22) 

(3.23) 

and @ is the contracted form of E:. Thus equation (3.16) may also be written as 

--L J x ' ( W ~ B j , h - ' h , ~ d S 1 - t 9 ~ i ' + , ~ 1 7 , ' .  
417 n 

(3.25) 

This may be contracted by taking indexes i and j to be equal to give a form analogous to 
equation (3.17). As before the surface integrals in (3.25) and its contracted form will 
vanish if the boundary is placed at infinity. 

Equations (3.16) and (3.25) are both useful; equation (3.25) is easier to interpret 
physically. We may identify the quantity (NkBk + & D k ) / 8 r  in the volume integral 
expression for a+ (2 as the electromagnetic energy density. The quantities ( D  x 
B),/47rc and ( D  x B ) r , i t / 4 ~  occurring in two other volume integrals are respectively the 
electromagnetic momentum density and its time derivative. The volume and surface 
integrals involving the components of the magnetic three-vectors, are similar to the 
corresponding terms of Chandrasekhar's hydromagnetics, (Chandrasekhar 1960, 
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1961). This similarity is purely formal, however, as in the present case the effects of 
gravitation, namely the distortion of spacetime, are implicitly included in all the terms 
of all the equations. We may show that the terms '3,' and R,' arise from the derivatives 
of the components of the spatial metric tensor. Consequently, these terms, as well as all 
the terms containing Christoff el symbols, vanish only in Cartesian coordinates in flat 
spacetime, giving rise to special relativistic forms of the equations. 

The physical significance of the remaining terms is best seen if we attempt a 
Newtonian reduction of the expressions. To find the Newtonian limit we expand the 
terms of these equations up to the first inverse power of c. This implies that we take 
b = im and K = 1;  we further take g,, = a,', g44 = -1, h = 1 and dt/d.r = 1 for all the 
terms, except that in calculating I'plyV"Vp in the expression for !IQ,', we take g,, = 
(1 + 2%3/c2)S:, g44 = -(1- 2%3/c2) where 8 is the Newtonian gravitational potential. 
With these, referring to equation (3.25), the terms h,4, G,', %,' and 9,' reduce to zero, 
d o  and dZ, reduce to their flat space expressions in Cartesian coordinates d3x and dS, 
respectively, and equation (3.25) reduces to 

d In x'bv d3x = In x'b "2,' d3x +- in bv'v' d'x - In x'p dSi + 8:' In p d3x 

x'[2(H'Bk + E ' o k )  dsk - ( f f k B k  +EkDk)  dSi] 
8~ an 

+s/(n++)-2(n/+e/,--- X'(DXB)i,4d3X, (3.26) 471. 'I n 

where the terms appear in the same order as in equation (3.25), and where we have used 
the fact that for any three-vector a, a, = a'. All the terms in equation (3.26) are now 
tensors with obvious physical meanings. Thus the terms %3/ and S/  have reduced to the 
volume integrals of ~ ' 6 8 , ~  and bv 'v'/2, which are the Newtonian gravitational potential 
energy tensor and Newtonian kinetic energy tensor respectively. It may be shown that 
the left-hand side of equation (3.26) may be written as the second time derivative of the 
inertia tensor, which is the volume integral of bxix'. Thus the time derivative of 2/ has 
reduced to the second time derivative of the inertia tensor in the Newtonian approxi- 
mation. Similar reductions hold for the remaining equations. These reduced equations 
describe a Newtonian fluid in an electromagnetic field and Newtonian gravitational 
field. If the electric field vanishes they reduce exactly to Chandrasekhar's equations in 
hydromagnetics. 

4. Applications 

As a first application of the exact virial theorem in curved spacetime (equation (3.18)) 
we consider a stationary self-gravitating spherically symmetric charged dust cloud in 
static equilibrium. In the absence of external fields gFY and FFY arise solely from the 
dust cloud. If the line element in the domain of spacetime occupied by the dust cloud is 
ds2 = (dr2 + r2  de2 + r2 sin2 8 d4*)/f2 - c2f2  dt2, where f is a function of r only, (r, 8,4) 
being spherical polar coordinates, we have: for a dust cloud K = 1, and so 6 = irn; 
p = 0, and so D/ = U = 0. Since N = 0, in time-orthogonal coordinates I3 = 0. This, 
together with the result = 0 implies that a/ = E/ = YJl= %! = 0. Since the dust 
cloud is in static equilibrium, dQ//dt = E/ = 0, and so the 11 component of equation 
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(3.18) gives %311+211=0. With the above line element, s = f, and so n =if dt/d.r, 
U = &f dt/d.r. Thus using the expressions (3.2) and (3.3) for %3/ and 3; respectively, we 
find that the equation %311+311=0 expresses the fact that the integral of 
rf(brf,V”V, +&@4,i dt1d.r) over R vanishes, where the volume element dR is given by 
d R =  h d3x = r2 sin 6’ dr d6’ d4/f3. Since drldt, deldt, and d4 ld t  vanish in static 
equilibrium, calculation shows that 

477 [ f-3r3(b~2f,l + &@4,1) dr = 0, (4.1) 

where we have partially integrated over 8 and 4. 
Equation (4.1) represents an equilibrium condition for the charged matter consi- 

dered, in terms of total integrated effects. In particular, condition (4.1) will be satisfied 
if 

(4.2) 

It may actually be shown that we should set B=*bG’/’ and (c2/G1/2)df/dr= 
rdQ4/dr. The condition (4.2), which is a special case of equation (4.1), was also 
obtained by Bonnor using different considerations and the field equations (Bonnor 
1965). These results indicate the role of charge in the equilibrium of mass distributions 
and show the existence of equilibrium configurations. They also indicate the possible 
relevance of charge to gravitational collapse. 

As a second application, we consider the equilibrium of charged elastic matter. The 
line element will be the same as in the first application, but the total energy tensor will 
contain the additional term S,“ which is associated with the elastic properties of the 
matter. The detailed form of S,” is given by Rayner (1963). It follows that the 
equilibrium condition is of the form (4.1), but with the additional term S1“;.r3/f2 in the 
integrand. Since the only non-vanishing components of S,’ are S1’ = S22 = S33 = 
-(1+ f 2 ) ( 2 p  +3v)/2, where p( r )  and v(r) are the Rayner scalars associated with the 
elast c matter (Nduka 1975), we have Slyiv = -[(f+f3)(2p + 3 ~ ) ] , ~ / 2 f .  With these, the 
equilibrium condition is 

1 [ f-3r3(~c2f,~+B@4,1-~[(f+f3)(2p+3v)],l] d r = 0 .  (4.3) 

It follows that a special case of equation (4.3) is 

The particular case of equation (4.4) confirms a result of Nduka, who used Bonnor’s 
method for the equilibrium of charged elastic matter (Nduka 1975). 
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